Enrollment No: _

Exam Seat No:

C. U. SHAH UNIVERSITY

Winter Examination-2022

Subject Name: Engineering Mathematics - II

Subject Code: 4TE02EMT3 Branch: B.Tech (All)

Semester: 2 Time: 11:00 To 02:00 Date: 19/09/2022 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 **Attempt the following questions:**

(14)

- a) The series $1 \frac{1}{2} + \frac{1}{2^2} \frac{1}{2^3} + \dots + \infty$ is
 - (a) convergent (b) divergent (c) finitely oscillating (d) infinitely oscillating
- **b)** Telescoping series is
 - (a) convergent (b) divergent (c) finitely oscillating (d) None of these

c)
$$\int_{0}^{\pi/2} \sin^{4} x \, dx = \underline{\qquad}.$$
(a) $\frac{3\pi}{16}$ (b) $\frac{6\pi}{16}$ (c) $\frac{9\pi}{16}$ (d) $\frac{3\pi}{4}$

d) If equation of the curve is y = f(x), then length of the curve is _____

(a)
$$s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 (b) $s = \int_{x_1}^{x_2} \sqrt{1 + \frac{dy}{dx}} dx$ (c) $s = \int_{x_1}^{x_2} \sqrt{1 - \left(\frac{dy}{dx}\right)^2} dx$ (d) None of these

$$(c)s = \int_{x_1}^{2} \sqrt{1 - \left(\frac{dy}{dx}\right)^2} dx \qquad (d)$$
 None of these

- e) $\Gamma(n-1) =$ ______. $(n \ge 2)$
 - (a) (n-2)! (b) (n-3)! (c) (n-4)! (d) (n-5)!
- $\beta\left(\frac{1}{2},\frac{1}{2}\right) = \underline{\qquad}$ (b) 1 (c) 0(d) π (a) $\sqrt{\pi}$
- **g**) For m > o, Gamma Function is__ (a) convergent (b) divergent (c) finitely oscillating (d) None of these

h) Area of Region R is _

$$(a) \int x \, dy$$

$$(b) \int y \, dx$$

$$(c)\iint\limits_{\mathbb{R}}dx\,dy$$

(a)
$$\int_{\mathbb{R}} x \, dy$$
 (b) $\int_{\mathbb{R}} y \, dx$ (c) $\iint_{\mathbb{R}} dx \, dy$ (d) $\iiint_{\mathbb{R}} dx \, dy \, dz$

- Tangents to the curve at infinity are called_____
- (b) Node
- (c) Conjugate Point
- (d) Asymptotes
- The transformation $x = r \cos \theta$, $y = r \sin \theta$ transform the area element dydx into $|J|drd\theta$ where |J| is equal to
 - (a) r
- (b) r^2
- (c) $r^2 \sin \phi$
- (d) $r^2 \cos \phi$
- **k)** The tangents are real and distinct then the double point is called _____
 - (a) Cusp
- (b) Node
- (c) Conjugate Point
- (d) Asymptotes

Which of the following is true?

(a)
$$\Gamma(m) = 2 \int_0^\infty e^{-x^2} x^{2m-1} dx$$

$$(b) B(m,n) = B(n,m)$$

(c)
$$\Gamma\left(m + \frac{1}{2}\right) = \frac{2m - 1}{2} \frac{2m - 3}{2} \dots \frac{1}{2} \sqrt{\pi}$$
 (d) All are true

- Degree of differential Equation $\frac{d^2y}{dx^2} = \left(\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + y^2\right)^{\frac{1}{4}}$ is _____ (a) 2
- **n**) What is the general solution of xdy + ydx = 0?
 - (a) xy = c
- (b) x=cy
- $(c) y = cx \qquad (d) xyc = 0$

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

a). Prove that
$$\int_0^1 x^5 (1-x^5)^{10} dx = \frac{1}{3} B(2,11)$$
.

b). Evaluate:
$$\int_{0}^{1} x^{m} \left(\log \frac{1}{x} \right)^{n} dx$$
 (05)

c). Show that B(m, n) =
$$\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$$
 (04)

a). Show that the series
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} + \dots \infty$$
 converges and find its sum. (05)

b). Examine the series
$$\sum_{n=1}^{\infty} \frac{x^n}{n^p}$$
 for convergence using root test. (05)

c).	Find radius of convergene for the series $x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$	(04)
	3 3	

Attempt all questions **Q-4**

(14)

a). Solve:
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
 given that $y = 0$ when $x = \frac{\pi}{3}$. (05)
b). Solve: $(x^2 + y^2 + 1) dx - 2xy dy = 0$. (05)

b). Solve:
$$(x^2 + y^2 + 1)dx - 2xy dy = 0.$$
 (05)

c). Solve:
$$\frac{dy}{dx} = \cos x \cos y - \sin x \sin y$$
. (04)

Q-5 Attempt all questions

(14)

a). Transform the integral
$$\int_{0}^{4a} \int_{\frac{y^2}{4a}}^{y} \frac{x^2 - y^2}{x^2 + y^2} dx dy$$
 by changing to polar (05)

Co-ordinates and hence evaluate it.

b). Find the area between one arc of the cycloid $x = a(\theta + \sin \theta)$,

$$y = a(1 - \cos \theta)$$
 and its base. (05)

c). Evaluate:
$$\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$$
 (04)

Attempt all questions **Q-6**

(14) (05)

a). Using reduction formula Evaluate
$$\int_{0}^{\pi} x \sin^{7} x \cos^{4} x \, dx$$
(05)
b). Using reduction formula prove that
$$\int_{0}^{1} x^{m} (1-x)^{n} \, dx = \frac{m! \, n!}{(m+n+1)!}$$
c). Test the convergence of the integral
$$\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} \, dx$$
(04)

c). Test the convergence of the integral
$$\int_{0}^{\infty} \frac{\cos x}{1 + x^2} dx$$
 (04)

Attempt all questions **Q-7**

(14)

- a). A circuit containing a resistance R, an inductance L in series is acted on by periodic electromotive force E $\sin \omega t$. If i = 0 at t = 0 show that (07) $i(t) = \frac{E}{\sqrt{R^2 + L^2 \omega^2}} \left[\sin(\omega t - \phi) + e^{-\frac{Rt}{L}} \sin \phi \right], \text{ where } \phi = \tan^{-1} \left(\frac{L\omega}{R} \right)$
- **b).** State and prove Legendre's formula.

(07)

Attempt all questions **Q-8**

(14)

a). Find the volume of the solid generated by the revolution of the loop of (05)the curve $x(x^2 + y^2) = a(x^2 - y^2)$ about the x - axis.

- **b).** Test the convergence of the integral $\int\limits_0^\infty \frac{x^2}{\sqrt{x^5+1}} dx$
- c). Trace the curve $y^2 = \frac{x^2(a-x)}{(a+x)}$; where a > 0.

